Oxidations catalyzed by osmium compounds. Part 1: Efficient alkane oxidation with peroxides catalyzed by an olefin carbonyl osmium(0) complex

Georgiy B. Shul'pin a,*, Aleksandr R. Kudinov b, Lidia S. Shul'pina b, Elena A. Petrovskaya b

a Kinetics and Catalysis, Semenov Institute of Chemical Physics, Russian Academy of Sciences, ulitsa Kosygina, dom 4, Moscow 119991, Russia
b Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, ulitsa Vavilova, dom 28, Moscow 119991, Russia

Received 16 July 2005; accepted 25 October 2005
Available online 1 December 2005

Abstract

A carbonyl osmium(0) complex with \(\pi \)-coordinated olefin, (2,3-\(\eta \)-1,4-diphenylbut-2-en-1,4-dione)undecacarbonyl triangulotriosmium (1), efficiently catalyzes oxygenation of alkanes (cyclohexane, cyclooctane, \(\eta \)-heptane, isooctane, etc.) with hydrogen peroxide, as well as with \(\text{ tert-} \)butyl hydroperoxide and \(\text{ meta-} \)chloroperoxybenzoic acid in acetonitrile solution. Alkanes are oxidized to corresponding alcohols, ketones (aldehydes) and alkyl hydroperoxides. Thus, heating cyclooctane with the 1–\(\text{ H}_2\text{O}_2 \) combination at 70 °C gave products with turnover number as high as 2400 after 6 h. The maximum obtained yield of all products was equal to 20% based on cyclohexane and 30% based on \(\text{ H}_2\text{O}_2 \). The oxidation of linear and branched alkanes exhibits very low regio- and bond-selectivity parameters and this testifies that the reaction proceeds via attack of hydroxyl radicals on C–H bonds of the alkane. The oxygenation products were not formed when the reaction was carried out under argon atmosphere and it can be thus concluded that the oxygenation occurs via the reaction between alkyl radicals and atmospheric oxygen. In summary, the Os(0) complex is much more powerful generator of hydroxyl radicals than any soluble derivative of iron (which is an analogue of osmium in the Periodic System).

© 2005 Elsevier B.V. All rights reserved.

Keywords: Alkanes; Homogeneous catalysis; Hydrogen peroxide; Organometallic compounds; Osmium complexes; Oxidation

1. Introduction

Saturated hydrocarbons, alkanes, are known to exhibit only very low reactivity in reactions with variety of normal reagents and in many cases the yields of the products are negligible. In last decades, new methods of alkane functionalization with participation of various transition metal complexes in solutions have been discovered and developed (see recent books and reviews [1–10]) and original publications [11–28]. Organometallic derivatives of transition metals very seldom exhibit high activity in alkane oxygenations [29,30]. A remarkable example is methyltrioxorhenium (MTO) [31,32] which efficiently oxidizes alkanes in the presence of pyrazin-2-carboxylic acid [33]. Metal-catalyzed alkane oxidations in solutions give directly valuable products such as alkyl hydroperoxides, alcohols, ketones, and carboxylic acids under mild conditions (see, for example, recent reviews [34,35]). It is interesting to note that although iron plays an extremely important role in oxidations occurring in living cells (e.g., cytochrome P450 [1,2,36] and methanemonooxygenase, MMO [1,2,37–39]) iron complexes and especially simple salts of this metal do not usually exhibit high activity in oxidations in vitro. Turnover numbers (TONs) in alkane oxidations are typically attain values only of 20–100 [34,35,40–45]. Thus, TONs in \(\text{ FeCl}_3 \)-catalyzed “Gif oxidations” (i.e., in the presence of pyridine) have been reported to equal values not higher than 1–20 [46]. Iron complexes (especially polynuclear derivatives) containing N-ligands are more powerful catalysts [40–45,47]. As for the classical Fenton reagent...
[48–55], i.e., the Fe(II)–H₂O₂ combination, is concerned, the efficiency of oxidation by this stoichiometric system is very low and usually the reaction proceeds non-selectively giving a variety of products (see also [47]). Catalytic system FeCl₃–H₂O₂ is also not efficient in alkane oxidation in acetonitrile [42]. All these processes proceed with formation of free hydroxyl radicals [48–62]. It should be also noted that oxidations of alkanes, RH, with participation of cytochrome P450 and MMO are believed to include in the crucial step an abstraction of a hydrogen atom to produce an alkyl radical, R·; which is involved into subsequent transformations. One cannot exclude that this radical adds (at least partly) molecular oxygen affording hydroperoxy radical, ROO·.

It was interesting to compare catalytic activity of derivatives of ruthenium and osmium which are analogues of iron in the Periodic System. Surprisingly, although osmium-catalyzed oxidation reactions of olefins [63–73] and alcohols [74–78] have been reported and are used in organic synthesis, much less is known about catalysis of alkane transformations by soluble osmium compounds [79–82]. Oxide of high-valent osmium, OsO₄ [79], and osmium chlorides [80] have been used in alkane oxidations with hydrogen peroxide in organic solvents. Very recently, Mayer and co-workers described [81] stoichiometric and catalytic oxidations of alkanes with OsO₄. This osmium derivative has been used as a catalyst in oxidation of isobutane with NaIO₄ in aqueous solution [pH 4.3; 168 h at 85 °C], TON being only ca. 4. Cyclohexene was oxidized by molecular oxygen or tert-butyl hydroperoxide (TBHP) in the presence of osmium carbonyl clusters supported on polymer matrices [82].

2. Results and discussion

In this work, we have found that π-olefin osmium(0) complex, (2,3-η,1,4-diphenylbut-2-ene-1,4-dione)undecacarbonyl triangulotriosmium (1), efficiently catalyses oxygenation of alkanes with hydrogen peroxide, as well as with tert-butyl hydroperoxide (TBHP) and meta-chloroperoxybenzoic acid (MCPBA). Complex 1 was synthesized as described previously [83] starting from Os₅(CO)₁₁⁻ (MeCN) and trans-1,4-diphenylbut-2-ene-1,4-dione. The structure of 1 was determined by the X-ray method [83].

Acetonitrile was used as a solvent and reactions were carried out in air at 50–70 °C. The oxygenation of cyclic, linear and branched alkanes, RH, gives rise to the formation of the corresponding alkyl hydroperoxides, ROOH, as the main primary products which further gradually decompose to yield more stable products, the ketones (aldehydes) and alcohols. The formation of alkyl hydroperoxides in addition to the corresponding alcohols and ketones was demonstrated employing a method previously used by us and which is based on the GC analysis [2,34,84–87]. Usually alkyl hydroperoxides are decomposed in the chromatograph to produce corresponding alcohol and ketone. If triphenylphosphine is added to the reaction solution ca. 10 min before the GC analysis, the alkyl hydroperoxide present is completely reduced to the corresponding alcohol. As a result, the chromatogram differs from that of a sample not subjected to the reduction (the alcohol peak rises, while the intensity of the ketone peak decreases). Comparing the intensities of peaks attributed to the alcohol and ketone before and after the reduction, it is possible to estimate the real concentrations of the three products (i.e., alcohol, ketone and alkyl hydroperoxide) present in the reaction solution. In our kinetic studies presented below, we measured the concentrations of the cyclohexanone and cyclohexanol only after the reduction with PPh₃ because in this case we obtained more precise values of the initial rates.

Kinetics of the cyclohexane, CyH, oxidation in homogeneous solution in acetonitrile are presented in Fig. 1. It can be seen that the corresponding alcohol, ketone and alkyl hydroperoxide are formed in comparable amounts. Turnover number under these conditions attains 550 (Table 1, entry 1). When catalyst 1 was used in higher concentration the TON became lower (entry 2) but in this case the maximum yield of all products was obtained: the concentration of oxygenates attained 0.175 mol dm⁻³ which corresponds to yield of 20% based on cyclohexane and of 30% based on H₂O₂ (assuming that two molecules of H₂O₂ are required to produce one molecule of CyOOH). The highest TON

![Complex 1](image)

Fig. 1. Accumulation of oxygenates (concentrations, c, of cyclohexanone, curve 1; cyclohexanol, curve 2; cyclohexyl hydroperoxide, curve 3, are given) in the cyclohexane (initial concentration 1.38 mol dm⁻³) oxidation with H₂O₂ (1.4 mol dm⁻³) catalyzed by 1 (2 × 10⁻⁴ mol dm⁻³). Conditions: solvent MeCN; homogeneous solution at 60 °C.
(2400) was attained when low concentration of 1 and large amount of cyclooctane was used (entry 4). We have also found that the efficient oxidation occurs in a biphasic system in the absence of any organic solvent (entry 5).

We have studied dependences of the initial rates in the cyclooctane oxidation on the concentrations of reactants. The initial rate is proportional to the concentration of 1 (Fig. 2) and first order has been also found for hydrogen peroxide (Fig. 3). The dependence of the initial hydrocarbon oxidation rate on the initial cyclooctane concentration (Fig. 4) exhibits a plateau when \([\text{cyclooctane}]_0 > 0.1 \text{ mol dm}^{-3}\). Such behaviour has been earlier explained [42] by competition between cycloalkane and acetonitrile for the interaction with an active oxidizing species (which is most probably hydroxyl radical; see below). Generally speaking, acetonitrile is not completely inert solvent in this reaction and can be transformed into certain products [88,89].

In order to get a mechanistic understanding of this oxidation process, we studied the oxidation of some linear and branched alkanes. The results are summarized in Tables 2 and 3. Table 2 demonstrates concentrations of all products formed in the oxidation of normal heptane and gives also the regioselectivity parameters \(C(1):C(2):C(3):C(4) \) for different times of the reaction. In addition to these parameters for \(n \)-hexane and \(n \)-heptane, bond selectivity parameters, \(1^0:2^0:3^0 \), are given in Table 3 for the oxidation of some branched alkanes (3-methylhexane, methylocyclohexane and 2,2,4-trimethylpentane). Normalized parameters in Table 3 have been calculated based only on concentrations of isomeric alcohols obtained after reduction of the reaction mixture with triphenylphosphine. This table contains also stereoselectivity parameters \(\text{trans/cis} \) obtained for the oxidation of disubstituted cyclohexanes (\(\text{cis-1,2-dimethylcyclohexane} \) and \(\text{cis-decalin} \)).

To compare selectivity parameters, the corresponding data for some other systems are also given in Table 3. Thus, it is believed that the alkane oxidation by reagent

<table>
<thead>
<tr>
<th>Entry</th>
<th>Alkane</th>
<th>Media</th>
<th>1</th>
<th>Temperature (°C)</th>
<th>Time (h)</th>
<th>TON (^a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cyclohexane</td>
<td>MeCN</td>
<td>(2 \times 10^{-4} \text{ mol dm}^{-3})</td>
<td>60</td>
<td>4</td>
<td>550</td>
</tr>
<tr>
<td>2</td>
<td>Cyclohexane</td>
<td>MeCN</td>
<td>(5 \times 10^{-5} \text{ mol dm}^{-3})</td>
<td>60</td>
<td>14</td>
<td>350</td>
</tr>
<tr>
<td>3</td>
<td>Cyclohexane</td>
<td>MeCN</td>
<td>(5 \times 10^{-3} \text{ mol dm}^{-3})</td>
<td>60</td>
<td>2</td>
<td>900</td>
</tr>
<tr>
<td>4</td>
<td>Cyclooctane</td>
<td>MeCN-H₂O(^b)</td>
<td>(5 \times 10^{-3} \text{ mol dm}^{-3})</td>
<td>70</td>
<td>6</td>
<td>2400</td>
</tr>
<tr>
<td>5</td>
<td>Cyclooctane</td>
<td>H₂O(^c)</td>
<td>(2 \times 10^{-3} \text{ mmol})</td>
<td>70</td>
<td>6</td>
<td>420</td>
</tr>
</tbody>
</table>

\(^a\) TON, turnover number, i.e., total moles of products produced per one mole of a catalyst.

\(^b\) Cyclooctane (0.5 mL) was partly insoluble in the reaction solution containing 0.4 mL 35% H₂O₂ and 0.8 mL MeCN.

\(^c\) The reaction was carried out in a two-phase system, volume of aqueous solution was 1 mL, volume of cyclooctane was 1 mL.
“H₂O₂–VO₃⁻–pyrazine-2-carboxylic acid” (see [1,2,10,34,35,90–93]) proceeds via the formation of hydroxyl radicals which attack C–H bonds of the alkane. Oxidations with H₂O₂ induced by iron salts Fe(ClO₄)₃ and FeSO₄ as well as the reaction stimulated by UV irradiation also occur with the formation of HO⁻ radicals. On the contrary, alkane oxidation by the “H₂O₂–[(TMTACN)MnIV(O₃)–MnIV(TMTACN)]²⁺–CH₃COOH” system (see [2,10,34,94–98]) apparently involves the interaction of the C–H bonds with MnV osmium species. It follows from Tables 2 and 3 that the oxidations by the “H₂O₂–I” system exhibit very low selectivities for linear and branched alkanes and the reaction with cis-decalin is not stereoselective. For example, regioselectivity in the n-heptane oxidation by this system in MeCN (ca. 1:5:5:5; compare with the value for the photoinduced reaction, 1:7:6:7) is noticeably lower than the corresponding parameter (1:46:35:35) for the “H₂O₂–[(TMTACN)MnIV(O₃)MnIV(TMTACN)]²⁺–CH₃COOH” system. These data testify clearly that I-catalyzed alkane oxidation proceeds mainly with participation of free hydroxyl radicals.

<table>
<thead>
<tr>
<th>Time (h)</th>
<th>Concentration (mmol dm⁻³)</th>
<th>Regioselectivitya</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>al</td>
<td>one-2</td>
</tr>
<tr>
<td>0.5</td>
<td>0.04</td>
<td>0.22</td>
</tr>
<tr>
<td>1.0</td>
<td>0.15</td>
<td>0.25</td>
</tr>
<tr>
<td>3.0</td>
<td>0.70</td>
<td>0.50</td>
</tr>
<tr>
<td>8.0</td>
<td>0.65</td>
<td>2.60</td>
</tr>
</tbody>
</table>

a Reaction conditions: n-heptane, 0.9 mol dm⁻³; H₂O₂, 1.2 mol dm⁻³; I, 1 x 10⁻⁴ mol dm⁻³; solvent MeCN; homogeneous solution at 60 °C.

Other Os(n)–Os(n+1) pairs can also operate in such type cycles, for example, the Os(III)–Os(IV) pair. Hydroxyl radicals attack C–H bonds in accordance with equation:

\[\text{RH} + \text{HO}^– = \text{ROO}^– + \text{H}^+ \]

Alkyl radicals add rapidly molecular oxygen from atmosphere:

\[\text{R}^– + \text{O}_2 = \text{ROO}^– \]

Peroxy radicals can be reduced with a ‘low-valent’ osmium species, for example:

\[\text{ROO}^– + \text{Os}(\text{II}) = \text{ROO}^– + \text{Os}^{\text{III}} \]

and after addition of a proton are transformed into the primary reaction product, alkyl hydroperoxide:

\[\text{ROO}^– + \text{H}^+ = \text{ROOH} \]

Aqueous solution of TBHP can be also used as an oxidant instead of hydrogen peroxide. The reaction with cyclohexane affords mainly cyclohexanol and less amounts of cyclohexanone and cyclohexyl hydroperoxide (Fig. 5). TON attains in this case 20. The initial reaction rate does not depend on concentration of I when [I] > 1 x 10⁻³ mol dm⁻³ (3)(Fig. 6). Selectivity parameters in the TBHP oxidations have been found to be higher than those for the H₂O₂ oxidations. For example, bond selectivity for the oxidation of methylcyclohexane was 1°:2°:3° = 1:5.4:66. This value is less than the corresponding parameter for the oxidation with the “H₂O₂–[(TMTACN)MnIV(O₃)MnIV(TMTACN)]²⁺–CH₃COOH” system (1:26:200). It is known that the radical tert-Me₂CO abstracts a hydrogen atom from branched alkanes to give the 1°:2°:3° = 1:10:40 ratio [99]. The 1°:3° ratio in the oxidation of isoocotane with participation of this radical was found to equal 1:41 [100]. The oxidation by the TBHP–I system exhibits low stereoselectivity. Thus, for oxidations of cis- and trans-1,2-dimethylcyclohexanes trans/cis parameters were 0.85 and 0.6, respectively. All these data allow us to propose that in the TBHP oxidations the key step is the attack of relatively weak voluminous tert-butoxy radical, tert-Me₂CO, on C–H bonds of hydrocarbon substrates.

Complex I catalyzes also alkane oxidation with MCPBA in acetonitrile at room temperature (for iron-catalyzed alkane oxidations with MCPBA, see our recent paper [44]). Total yield of oxygenates (ketone, alcohol and alkyl
<table>
<thead>
<tr>
<th>Entry</th>
<th>System</th>
<th>C(1):C(2):C(3):C(4)<sup>b</sup></th>
<th>1<sup>a</sup>:2<sup>c</sup>:3<sup>c</sup></th>
<th>trans/cis<sup>d</sup></th>
<th>cis-DMCH<sup>e</sup></th>
<th>cis-Decalin</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>n-Hexane</td>
<td>n-Heptane</td>
<td>3-Methylhexane</td>
<td>Methylcyclohexane</td>
<td>2,2,4-Trimethylpentane</td>
</tr>
<tr>
<td>1</td>
<td>1–H<sub>2</sub>O<sub>2</sub> (MeCN, 60 °C)<sup>f</sup></td>
<td>1:0:6:2:7:1</td>
<td>1:0:5:5:5:0:4:6</td>
<td>1:6:19</td>
<td>1:4:10</td>
<td>1:5:8:5</td>
</tr>
<tr>
<td>2</td>
<td>1–H<sub>2</sub>O<sub>2</sub> (<sub>2</sub>O, 70 °C)</td>
<td>1:9:5:9:9</td>
<td>1:4:11</td>
<td>1:2:14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1–MCPBA (MeCN, 25 °C)</td>
<td>1:34:29</td>
<td>1:12:10:3:5</td>
<td>1:3:58</td>
<td>1:2:9</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>MCPBA (MeCN, 25 °C)</td>
<td>1:36:36.5</td>
<td>1:89:750</td>
<td>1:20:520</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>OsCl<sub>3</sub>–H<sub>2</sub>O<sub>2</sub> (MeCN, 80 °C)<sup>f</sup></td>
<td>1:12:10:3:5</td>
<td>1:3:58</td>
<td>1:2:9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>FeCl<sub>3</sub>–H<sub>2</sub>O<sub>2</sub> (MeCN, 20 °C)</td>
<td>1:9:9</td>
<td>1:4:30</td>
<td>1:7:43</td>
<td>1:5:13</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Fe(CIO<sub>4</sub>)<sub>3</sub>–H<sub>2</sub>O<sub>2</sub> (MeCN, 20 °C)</td>
<td>1:5:4:5</td>
<td>1:7:6:7</td>
<td>1:4:12</td>
<td>1:2:6</td>
<td>1:3</td>
</tr>
<tr>
<td>8</td>
<td>FeSO<sub>4</sub>–H<sub>2</sub>O<sub>2</sub> (MeCN, 20 °C)</td>
<td>1:10:7</td>
<td>1:7:6:7</td>
<td>1:4:12</td>
<td>1:2:6</td>
<td>0.9</td>
</tr>
<tr>
<td>9</td>
<td>hv–H<sub>2</sub>O<sub>2</sub> (MeCN, 20 °C)</td>
<td>1:8:7</td>
<td>1:9:7:7</td>
<td>1:6:22</td>
<td>1:6:18</td>
<td>1:4:9</td>
</tr>
<tr>
<td>10</td>
<td>h–Bu<sub>4</sub>NVO<sub>3</sub>–PCA–H<sub>2</sub>O<sub>2</sub> (MeCN, 40 °C)<sup>f</sup></td>
<td>1:46:35:35</td>
<td>1:22:200</td>
<td>1:26:200</td>
<td>1:5:50</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>[L<sub>2</sub>Mn<sub>2</sub>O<sub>7</sub>]<sup>f</sup>–MeCO<sub>2</sub>H–H<sub>2</sub>O<sub>2</sub> (MeCN, 20 °C)<sup>b</sup></td>
<td>1:5:4:5</td>
<td>1:7:6:7</td>
<td>1:4:12</td>
<td>1:2:6</td>
<td>0.9</td>
</tr>
</tbody>
</table>

^a All parameters were measured after reduction of the reaction mixtures with triphenylphosphine before GC analysis and calculated based on the ratios of isomeric alcohols. Reaction conditions for the oxidations catalyzed by I are similar to those described in Table 1.

^b Parameters C(1):C(2):C(3):C(4) are relative normalized (i.e., calculated taking into account the number of hydrogen atoms at each carbon) reactivities of hydrogen atoms at carbons 1, 2, 3 and 4, of the chain of unbranched alkanes.

^c Parameters 1^a:2^c:3^c are relative normalized reactivities of hydrogen atoms at primary, secondary and tertiary carbons of branched alkanes.

^d Parameter trans/cis is the ratio of trans- and cis-isomers of tert-alcohols formed in the oxidation of cis-disubstituted cyclohexanes.

^e cis-DMCH is cis-1,2-dimethylcyclohexane.

^f See [80].

^h PCA is pyrazine-2-carboxylic acid; for this system, which is believed to oxidize substrates via formation of hydroxyl radicals, see [1,2,10,34,35,90–93].

^b L is 1,4,7-trimethyl-1,4,7-triazacyclononane; for this system which is believed to oxidize substrates without participation of free radicals (though the formation of radicals in the course of the reaction is assumed), see [2,10,34,35,94–98].
hydroperoxide) in the cyclohexane (0.46 mol dm$^{-3}$) oxidation (MCPBA, 1.16 mol dm$^{-3}$, 1, 1 x 10$^{-3}$ mol dm$^{-3}$; MeCN; 25 °C) attained 0.037 mol dm$^{-3}$ after 72 h which corresponds to TON = 37. The oxidation under the same conditions in the absence of 1 gave only 0.0017 mol dm$^{-3}$ products. The TON can be enhanced (up to 80 after 48 h) using lower concentration of 1 (1 x 10$^{-4}$ mol dm$^{-3}$). The initial rate of oxygenate accumulation is proportional to the concentration of catalyst 1 (Fig. 7). It is interesting that order of the reaction in respect to MCPBA is higher than unity (Fig. 8). First order has been found for substrate at [cyclohexane] < 0.5 mol dm$^{-3}$, whereas the initial reaction rate does not depend on the hydrocarbon concentration at its higher concentration (Fig. 9).

Selectivity parameters in the Os-catalyzed oxidation with MCPBA are much higher (Table 3, entry 3) than those for the oxidations with H$_2$O$_2$ and TBHP. These parameters are very close to the parameters obtained (Table 3, entry 4) for much less efficient (see Fig. 8) non-catalyzed oxidation.
with MCPBA. The catalyzed oxidation of disubstituted cyclohexanes occurs with partial retention of configuration (the trans/cis parameter was found to equal 0.5; see Table 3). It is clear that in the case of MCPBA the oxidation does not include free radicals as reactive intermediates.

3. Conclusions

In this work, we describe for the first time that a low-valent organometallic osmium complex is a very powerful generator of hydroxy radicals from hydrogen peroxide and can be used as a catalyst in H$_2$O$_2$-oxygenations of saturated and aromatic hydrocarbons. This catalyst is much more efficient than any derivative of iron (an analogue of osmium in the Periodic System).

4. Experimental

The oxidations of hydrocarbons were carried out in MeCN in air in thermostated Pyrex cylindrical vessels with vigorous stirring. The total volume of the reaction solution was 2 mL. Initially, a portion of H$_2$O$_2$ (35% aqueous), TBHP (70% aqueous) or MCPBA (“Fluka”) was added to the solution of the catalyst and substrate. After certain time intervals samples (about 0.2 mL) were taken. In order to determine concentrations of all cycloalkane (cyclohexane or cyclooctane) oxidation products the samples of reaction solutions were analyzed twice (before and after their treatment with PPh$_3$) by GC (Chromatograph-3700, fused silica capillary column FFAP/OV-101 20/80 w/w, 30 m × 0.2 mm × 0.3 μm; helium as a carrier gas) measuring concentrations of cycloalkanol and cycloalkanone. Oxidations of other hydrocarbons were carried out analogously. Authentic samples of all oxygenated products were used to attribute the peaks in chromatograms (comparison of retention times was carried out for different regimes of GC-analysis). The reaction of MeCN with water in the presence of osmium derivatives can give some amount of acetonitrile ligand, Os$_3$(CO)$_{11}$(MeCN) (2) was synthesized [102] starting from Os$_3$(CO)$_{12}$ (0.407 g, 0.45 mmol). A solution of 2 and trans-1,4-diphenylbut-2-en-1,4-dione (0.953 g, 0.40 mmol) in hexane (150 mL) was heated under reflux during 22 h. After evaporation of the solvent in vacuum and chromatography (silica gel, eluent hexane–chloroform 1:1), complex I was isolated (yield 0.374 g, 81%) as a yellow solid, m.p. 160 °C (with decomposition). The compound was characterized by elemental analysis, 1H and 13C NMR, IR spectra and X-ray analysis [83].

Acknowledgements

This work was supported by the grant from the Section of Chemistry and Material Science of the Russian Academy of Sciences (Program “A theoretical and experimental study of chemical bonds and mechanisms of main chemical processes”). The authors thank also the Russian Basic Research Foundation.

References